Genetic and biochemical properties of streptococcal NAD-glycohydrolase inhibitor.

نویسندگان

  • Hisashi Kimoto
  • Yutaka Fujii
  • Satoko Hirano
  • Yoshifumi Yokota
  • Akira Taketo
چکیده

The gene encoding streptolysin O (slo), a cytolysin of hemolytic streptococci, is transcribed polycistronically from the promoter of the preceding NAD-glycohydrolase (NADase) gene (nga). Between nga and slo, a putative open reading frame (orf1) is located whose function has been totally unknown. Present investigation demonstrated that the orf1 encodes a protein designated as streptococcal NADase inhibitor (SNI). From its nucleotide sequence, SNI was inferred to comprise 161 amino acid residues and the deduced molecular weight was 18,800. This protein was detectable only within cells. Coexpression of SNI was essential for production of streptococcal NADase, and NADase precursor existed as an inactive complex with SNI, in recombinant Escherichia coli. Monomeric NADase and SNI rapidly formed in vitro a stable heterodimer complex in the ratio 1:1, resulting in complete suppression of the hydrolase activity. Unlike other bacterial NADase inhibitors, SNI was thermostable. This protein, coexpressed and complexed with NADase, may protect the producer cocci from exhaustion of NAD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Endogenous Inhibitor of the Secreted Streptococcal NAD-Glycohydrolase

The Streptococcus pyogenes NAD-glycohydrolase (SPN) is a toxic enzyme that is introduced into infected host cells by the cytolysin-mediated translocation pathway. However, how S. pyogenes protects itself from the self-toxicity of SPN had been unknown. In this report, we describe immunity factor for SPN (IFS), a novel endogenous inhibitor that is essential for SPN expression. A small protein of ...

متن کامل

NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells.

By using a sensitive fluorimetric assay of NAD+ glycohydrolase (EC 3.2.2.6), we showed that calf spleen cells are able to hydrolyse 1,N6-etheno-NAD+ given in the medium. The observed rates of substrate hydrolysis and product accumulation in the medium are equivalent. Moreover, the splenocytes are able to cleave the nicotinamide-ribose bond of a water-soluble polymer of NAD+, and their NAD+ glyc...

متن کامل

Asymmetric reassociation of calf spleen NAD+ glycohydrolase into liposomes.

NAD+ glycohydrolase (NAD+ nucleosidase, EC 3.2.2.6) can be solubilized from calf spleen microsomes (microsomal fractions) by steapsin or by detergents to yield respectively a hydrophilic (i.e. water-soluble) and a hydrophobic form of the enzyme. The detergent-solubilized enzyme was successfully reassociated into phosphatidylcholine liposomes either by a cholate-dialysis or by a gel-filtration p...

متن کامل

Topography, purification and characterization of thyroidal NAD+ glycohydrolase.

Subcellular fractionation of bovine thyroid tissue by differential pelleting and isopycnic gradient centrifugation in a zonal rotor indicated that NAD(+) glycohydrolase is predominantly located and rather uniformly distributed in the plasma membrane. Comparison of NAD(+) glycohydrolase activities of intact thyroid tissue slices, functional rat thyroid cells in culture (FRT(l)) and their respect...

متن کامل

A simple biological method for detecting streptococcal nicotinamide adenine dinucleotide glycohydrolase.

A biological method for detecting streptococcal nicotinamide adenine dinucleotide glycohydrolase (NADG) is presented, based on its ability to inhibit the growth of Haemophilus parainfluenzae. Three hundred clinical isolates of beta-haemolytic streptococci were tested. All isolates producing NADG belonged to Lancefield's group A, C, or G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 14  شماره 

صفحات  -

تاریخ انتشار 2006